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J .  Phys. A: Math. Gen. 21 (1988) 2979-2994. Printed in the U K  

Monte Carlo simulations of radial displacement of oil from a 
wetted porous medium: fractals, viscous fingering and invasion 
percolation 

Denys F Leclerct and Graham H Neale 
Department of Chemical Engineering, University of Ottawa, Ottawa, 
Ontario K1N 6N5, Canada 

Received 2 October 1987, in final form 21 March 1988 

Abstract. A numerical random-walk method for simulating pore-size radial displacement 
of oil from wetting porous media under varying conditions of pore-size distribution, 
wettability, mobility ratio and capillary numbers is described. The algorithm involves 
Monte Carlo decision making, random walks and percolation theory. The likelihood of 
having a walker start from a peripheral site, or from the origin, is determined by the 
viscosity ratio, M. Sticking probabilities, however, depend on the interfacial tension, y ,  
and the solid-liquid contact angle, 8. Three limiting behaviours are identified in terms of 
viscosity ratio and capillary number: viscous fingering, plug flow and invasion percolation. 
Numerical experiments are performed for M = 13 ( y  = 18 mN m-', 8 = 50"), and for M = 
7.6 x lo-' i y = 66 mN m-', 0 = 70") at flow rates spanning four decades on a porous network 
of pores and sites having a log-normal size distribution. Typical runs last about 5-10 min. 
Preliminary evidence of partially dendritic growth at high capillary number is discussed. 
Agreement with previously reported experiments is excellent. 

List of symbols used 

diameter of bond; site. 
geometric constant due to radial flow. 
integer dimension ( = 2  for this work). 
fractal dimension. 
probability of having k active bonds in a x-neighbour geometry. 
lattice unit size. 
porous medium thickness. 
number of active bonds per site. 
extent of linear-flow porous media. 
time (Monte Carlo steps/site). 
viscosity ratio ( = F ~ ~ / F ~ ) .  
number of lattice units occupied by the displacing fluid. 
capillary number. 
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probability of finding a random walker at site s. 
intraphase pressure drop: non-wetting; wetting. 
capillary pressure (=(4y cos O)/a , ) .  
pressure gradient. 
volumetric flow rate. 
radial distance (in lattice units). 
breakthrough radius (in lattice units). 
non-wetting phase saturation. 
interface velocity (lattice units/ walk step). 
normalised interface velocity. 
interfacial surface tension. 
evaporation probability; percolation probability. 
porosity 
solid-liquid contact angle. 
permeability. 
generic mobility in Darcy’s law (=  K / P ~ ~ ; ~ ) .  
bulk phase viscosity: non-wetting; wetting. 
sticking probability: non-wetting; wetting. 

1. Introduction 

Viscous fingering in porous media has been a long-standing problem for researchers 
trying to understand this phenomenon in order to effect economical oil recovery. 
Recently, however, a number of advances have been made which suggest that a workable 
solution will eventually be found. This progress has been reviewed extensively by 
Witten and Cates [ l ]  concerning disorderly growth processes, and by Homsy [2] on 
the topic of viscous fingering. These authors give an excellent overview of recent 
theoretical and experimental developments. 

A question that stood unresolved for many years was the origin of finger instability: 
experimental results [3] could not be accounted for by classical linear stability analysis 
[4-61. Either unstable fingers were forecast where only stable fingers were observed 
[3,6], or finger thickness could not be reconciled with simulation results [ 6 ] ,  even 
though finger shape was successfully predicted. This unhappy state of affairs changed 
when boundary integral methods were applied to the problem: numerical experiments 
by Tryggvason and Aref [7] and by De Gregoria and Schwartz [8] have shown that, 
if surface tension is properly incorporated in the calculations, stable fingers will develop 
over a wide range of capillary numbers. Also, those fingers become increasingly 
unstable with decreasing surface tension, as has been observed experimentally with 
Hele-Shaw cells. 

Meanwhile, an attempt by Paterson [9] at modelling immiscible radial flow displace- 
ment in Hele-Shaw cells was extended to porous media by Ni et a1 [lo], where 
displacement of glycerin by parraffin oil was observed to depend on the relative 
strengths of capillary and viscous forces. Good agreement between theory and experi- 
ment was obtained. Lately, investigators [9, 111 have stressed the importance of the 
capillary number, Nc, ,  as a relevant parameter for predicting finger width, which for 
wetting media decreases linearly with N,, . Recent porous media simulations confirm 
this observation by using a pore-site network [ 121. Unfortunately, no simulations were 
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carried out at viscosity ratios other than unity. Therefore, it is very difficult to use 
these results for predicting finger behaviour at very low viscosity ratios. 

1 . 1 .  The D L A  model 

In the last few years, there has been a conjecture that, as the capillary number increases 
to very large values, fingering patterns become fractals, with complex, tree-like struc- 
tures which are characterised by a single parameter, the fractal dimension, D. The 
prevailing model used is that of diffusion-limited growth (i.e. aggregation), better 
known as DLA. Following earlier investigations by Mullins and Sekerka [13] on the 
aggregation of condensed matter, Forrest and Witten [14] conducted a study of 
long-range correlations in a two-dimensional cross section taken from a three- 
dimensional smoke particle aggregate. Their analysis suggested that the aggregation 
process of such an aerosol was occurring in a self-similar manner and that the fractal 
dimension of the object was between 1.5 and 1.8. As to the origin of this process, it 
is now widely accepted that the aggregation of colloids and aerosols is best described 
by the ‘clustering of clusters’ model. At the time, however, the discovery of the fractal 
character of smoke aggregates spurred Witten and Sander [ 151 to propose a model for 
their formation. This model is based upon potential theory and serves as the mathemati- 
cal foundation for the diffusion-limited growth ( DLA) model; the most effective way 
to simulate such a process is to let random walkers wander over an arbitrary lattice 
and stick on the growing cluster upon first contact. This situation corresponds to a 
negligible surface tension and the growth rate gives a fractal dimension that agrees 
well with most observations [ 161. Computer simulations by Meakin [ 171 confirmed 
those findings. Similar results were obtained by Turkevitch and Scher 1183 using a 
reformulation of DLA that uses occupancy probabilities on the unscreened tips of the 
aggregate. Examples of diffusion-limited growth include the electrodeposition of zinc 
metal [19] and the Litchtenberg figures seen in dielectric breakdown [20]. However, 
the irreversible kinetic aggregation of aqueous gold colloids [21] is now interpreted 
as a ‘clustering of clusters’; this model was introduced by Meakin [22] and by Kolb 
er a1 [23] and is now the best available explanation for the formation of aerosol 
structures. 

Paterson [24] noted similarities between DLA and two-phase fluid flow in porous 
media, provided that experimental conditions maximise the capillary number, N,, , 
and that the displacing fluid is practically inviscid with respect to the displaced fluid; 
thus, interface instabilities keep growing because they are amplified by the high mobility 
of the displacing fluid [24]. Experiments in linear [25] and radial [26] Hele-Shaw 
cells show that viscous fingering at nearly infinite mobility ratios generates fractals 
with a fractal dimension equal to 1.7 for a radially symmetric cell geometry. 

Non-wetting displacement experiments at high N,, in porous media gave essentially 
the same results [27], except that fingers did not grow beyond pore-level size. The 
DLA model, however, is simplistic and is limited in scope: it does not address finite 
mobility ratios, non-zero surface tension or relative permeabilities. Nevertheless, it 
can account for pore-size distribution: Chan et a1 [28] and Chen and Wilkinson [29] 
have shown that when pore sizes are exponentially or uniformly distributed over [0,1], 
DLA-like patterns will develop. Dendritic fingers are seen only when most pores have 
the same radius. 

A number of approaches have been devised to adapt the DLA model to finite-mobility 
situations: De Gregoria [30] used an analogy with an electrical network of resistors to 
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simulate growth. Capillary pressure effects in porous media are characterised by 
immiscible displacement saturation profiles that reflect a quadratic dependency on the 
saturation [31]. King and Scher [32] have extended DLA to finite-mobility ratios: 
saturation profiles are determined as a quadratic function of the mobility ratio in order 
to account for the non-zero pressure drop that is present in immiscible displacement. 
This pressure drop varies from point to point along the interface, and growth occurs 
mainly at points of high pressure gradient (i.e. field) or of least resistance. Sherwood 
and Nittman [33] and Sherwood [34] have modelled the effect of a finite viscosity 
ratio on gradient-governed growth by solving Laplace’s equation for each point on the 
interface. Both stable and unstable types of growth are seen: in particular, DLA-type 
aggregation is generated in the infinite mobility ratio situation. These studies did not, 
however, include surface tension or capillary forces in the simulations. 

Following a suggestion by Kadanoff [35], Liang [36] has mimicked the effects of 
surface tension by letting random walkers ‘evaporate’ from the cluster after first contact, 
with a probability proportional to the pressure discontinuity at the interface. This 
pressure discontinuity is inversely proportional to the local radius; therefore, a given 
site must be visited a minimum number of times before the interface can rearrange itself. 

Finally, Paterson [37] allowed for the different permeabilities encountered in 
heterogeneous media by changing the lattice spacing so that walkers travel at various 
speeds. Alternatively, one can also vary the number of required random walkers that 
must hit a given site. 

1.2. Invasion percolation and porous media 

A porous medium can be thought of as a network of sites (bodies) connected by many 
bonds (necks or throats). In general, the diameter of most sites is bigger than that of 
bonds. However, because each set of quantities follows a wide distribution, there will 
be some overlap and a small number of bonds will have a larger diameter than their 
corresponding sites. This sets the stage for the well known Haines jumps [38] that are 
a feature of non-wetting displacement in porous media. The probability of those jumps 
depends on the value of the local capillary pressure, the solid-liquid contact angle, 
and the bond diameter. 

In drainage, the interface first invades the larger bonds. A meniscus that is situated 
at the narrowest sites is thus unstable, and will spontaneously ‘spring back’ into a 
larger bond, if any exists nearby. This is because the negative curvature of a non-wetting 
meniscus translates into a positive gradient; thus it must be opposed by a greater 
gradient in order for movement to occur. Conversely, imbibition displacement is 
spontaneous and is most likely to occur first at the smallest sites. In other words, 
drainage first occurs at the largest bonds because of the lower pressure drop needed 
to overcome the opposing capillary pressure, whereas in imbibition a higher capillary 
pressure will facilitate displacement. Therefore, drainage is bond controlled and 
imbibition is site controlled. 

Displacements in porous media thus do not occur smoothly with time; rather, they 
evolve in a burst-like manner, as a series of discrete steps. The result of this chain of 
events is mathematically known as a percolation cluster. Such a cluster can be built 
using a given ensemble of rules, set by Monte Carlo methods. The study of percolation 
is not limited to mathematics: recently, the theory of percolation was used to analyse 
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stochastic models of galactic evolution in which supernovae promote star formation 
by exploding at random intervals [39]. Traditional percolation analysis of immiscible 
displacement in porous media [40] successfully predicts the characteristic length of a 
trapped area to be linearly dependent on the inverse of the capillary number; that is, 
more and more of the wetting phase is displaced until all of the available pore space 
is invaded at very high capillary numbers. However, tapering-off of the residual 
saturation at very low N,, reveals that trapped areas are much larger than predicted 
[40]. This indicates there is a different process at work that is not explained by classical 
percolation theory. Nonetheless, this theory gives a good description [41] of the 
distribution and relative amount of non-wetting phase areas, especially for isolated 
and dead-end pores. 

Yanuka et a1 [42] modelled tridimensional porous media displacements using 
bond-site percolation theory: sites are chosen by pseudo-random number generation. 
Necks develop as a result of intersections between sites. Invasion proceeds according 
to classical percolation, i.e. by searching for the smallest site (or number). Unfortu- 
nately, this method is very time consuming, even for a reasonably fast computer. 
However, the biggest drawback of simulations based on classical percolation theory 
is that traps are eventually invaded. Such a situation naturally occurs for gases which 
are compressible, as opposed to liquids which are not. Therefore, the theory must be 
modified to accommodate incompressible traps and for the increasing capillary pressure 
that is observed with increasing saturation. 

This modification is now known as ‘invasion’ percolation. I t  was first introduced 
in 1983 by Wilkinson and Willemsen [43] and has the advantage of rendering trapped 
areas inaccessible to the invading fluid. This effectively lowers the two-dimensional 
fractal dimension to a theoretical value of 1.82, instead of 1.89 for the classical theory. 
Invasion-percolation cluster growth occurs dynamically along a path of least resistance 
[44] by choosing the smallest available random number. A similar method was 
proposed recently by Ramakrishnan and Wasan [45]; however, no value for the fractal 
dimension was given. Wilkinson [46] has studied the macroscopic consequences of 
pore-level percolation behaviour of two-phase immiscible displacement and found 
them to be consistent with the multiphase Darcy equations. He also predicted the 
macroscopic behaviour of relative permeabilities and of the capillary pressure curve, 
as well as microscopic quantities such as the fractal dimension and the cluster size 
distribution, even for very low capillary numbers. 

Experiments on photographically etched networks of square ducts by Lenormand 
and Zarcone [47,48] confirmed and generalised those studied to include viscous 
fingering (diffusion-limited growth) and stable displacement. Their findings were as 
follows: invasion percolation (capillary fingering) ( D  = 1.83) always occurs at very 
low capillary numbers, no matter what is the value of the viscosity ratio; displacements 
at high capillary numbers are either stable ( D  = 2.00) under a favourable viscosity 
ratio, or undergo viscous fingering ( D  = 1.50-1.70) under unfavourable conditions of 
viscosities. Results are shown [48] for M = 13 and M = 7.6  x with flow rates 
spanning four orders of magnitude. 

Lenormand [49] has elucidated the theory behind three of the basic mechanisms 
for non-wetting displacement in porous media: boundaries for the phenomena are 
calculated in terms of M and N,, ( = u p h l w / y )  from a porous-medium application of 
Darcy’s and Laplace’s laws for pressure drops. These boundaries are determined for 
each phenomenon, or ‘phase’, from the geometrical properties of the medium and 
drawn on a phase diagram where N,, is plotted against the viscosity ratio, M. 
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The purpose of the present work is to develop a stochastic simulation algorithm 
that effectively simulates actual experiments without excessive computational overhead. 
Results will be compared with the experiments done by Lenormand and Zarcone [48 ]  
under nearly identical conditions. 

2. Theory 

The theoretical details underlying diffusion-limited growth [ 15,201 and invasion perco- 
lation [43 ,46 ,49 ]  are given elsewhere and will not be covered here. However, develop- 
ments pertinent to the extension of the DLA model to finite mobilities and non-zero 
surface tension will be discussed, along with some aspects of invasion percolation in 
porous media. The determination of stable and unstable displacement phase boun- 
daries will also be undertaken in term of M and Nca. 

2.1. Finite-mobility DLA 

The growth process of an invading cluster follows a transport law similar to Darcy’s 
law when diffusion represents the controlling factor. The interfacial velocity is then 

V = - A V p = F / m  ( 1 )  

p being the probability, or normalised ‘pressure’, of finding random walkers at any 
given site on the interface; F, the lattice size; m, the time expressed in Monte Carlo 
steps per site [50]; and A, the generic phase mobility. Rearranging ( 1 )  we obtain the 
equation for gradient-governed growth, which occurs spontaneously on a negative 
gradient: 

(2) 

Diffusion-limited growth occurs in conditions of infinite mobility ( A  + C O )  and all 

-Vp = V / A  = F / ( m A ) .  

points on the interface experience a negligible gradient: 

v p = o  m a l .  ( 3 )  

Thus growth occurs at a constant rate at all points along the interface by having 
all walkers stick on first contact; a discrete lattice requires that the smallest walk step 
be equal to one, which is also the case for miscible flood. Integrating (2) for both 
injected (NW) and displaced (w) phases and setting the integrating constant to unity, 
we obtain the smallest number of steps per site needed to advance the interface from 
either phase. This number corresponds to a physical pressure, namely the intraphase 
pressure drop [49]  for radial flow at any site 0 S r s R from the injection point: 

where q is the volumetric flow rate; pNWLW, the bulk phase viscosity; E ,  the medium 
porosity; r, the radial distance; R,  the breakthrough radius; K ,  the absolute permeability, 
expressed in lattice units; h, the medium thickness, which is unity for two-dimensional 
systems; 6 p N W i w ,  the intraphase pressure drop for either phase; and a b i s ,  the average 
bond (site) diameter. As the viscosity ratio, M (  = p N w / p w ) ,  approaches zero, random 
walkers only hit the interface from the wetting phase and DLA-type growth occurs 
because of the constant flux. On the other hand, as the viscosity ratio goes to infinity, 
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8pNW + CO and becomes much greater than the opposing capillary pressure, p c .  There- 
fore, all bonds can be penetrated by the invading fluid and stable displacement is 
favoured because the growth process is governed by the pressure gradient [33,34,50] 
rather than by the value of the mobility, as is the case for diffusion-limited growth. 

2.2. Capillary pressure and percolation 

The effect of introducing a surface tension is to make the growing interface of the 
cluster more susceptible to rearrangements after first contact, provided that Sp,, , ,  is 
not too high with respect to the capillary pressure. According to Kadanoff [35], a 
walker can walk from the point of first contact at bond b (site s)  to another point on 
the same cluster. The sticking probability is then 

4Nw,db;  S) = 1 - ( 4 ~  COS ~ ) / ( ~ P N w . w ~ ~ . , I  ( 5 )  

where 0 is the solid-liquid contact angle given by Young’s equation; thus, non-wetting 
phase contacts are bond controlled, while wetting phase contacts are site controlled. 
Consequently, when p c =  S p N w , w ,  walkers will tend to avoid narrow bonds (sites), as 
has been observed for non-wetting displacement. Alternatively, when S p N N , W  + a, the 
sticking probability goes to unity and we obtain the limit of vanishing surface tension. 
Similar relationships were derived by Liang [36] and Lenormand [49]. The probability 
that a wetting phase walker will ‘evaporate’ from the interface is 

T W ( S )  = 1 - 4 w ( s )  ( 6 a )  

T N W ( b )  = 4 N W ( b )  (66) 

rw(s) = 0.6 (7) 

for any bond-site pair [44]. The quantity ( 1  -rNw(b)) corresponds to the likelihood 
of inactive bonds, and rNw(b) is the probability that a cluster site will percolate into 
neighbouring bond-site pairs by using open bonds. At the percolation threshold, 
TNw(b) is approximately 0.5: in classical percolation, this is the point beyond which 
a cluster can grow indefinitely and, appropriately, ‘infect’ the whole population. The 
fractal dimension at the invasion percolation threshold has been consistently measured 
by many authors [43,44,46,47] to be equal to 1.82: at this point, the cluster grows 
very slowly. Above the classical percolation threshold, there are no limits on cluster 
size; below this critical value, however, growth eventually grinds to a halt, and the 
‘epidemic’ remains confined to a small section of the population [39]. This restriction 
does not apply to invasion percolation, in which a cluster will continue to grow 
dynamically along a path of least resistance. This may also happen at the threshold 
when the proportion of Haines jumps is not negligible. The maximum probability of 
active-bond Haines jumps at the threshold is approximately 25% ; that is, if the bond 
size distribution completely overlaps the pore (site) size distribution. In most practical 
cases, however, the proportion of Haines jumps remains small because there is little 
overlap between the two distributions, as figure 1 demonstrates. Following [39], the 
probability f ( x )  of having k open bonds, or ‘live’ neighbours, in a four-neighbour 
geometry is 

whereas the sticking probability for a non-wetting phase walker is 

so that near the percolation threshold, for a square lattice, 

f(4) = (? ) rNw(b)k ( l  - r ~ w ( b ) ) ~ - ~  (8) 
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Diameter (lattice units) 

Figure 1. Bond- and pore-size log-normal distributions for bonds (hatched) and sites 
(dotted). 

where k = 0, 1 , .  . . , 4 .  A number k for each site is generated by performing four 
coin-toss trials per site. A similar method was used by Schulmann and Seiden [39] in 
galactic evolution models to obtain the number of probable infant stars born in the 
wake of exploding supernovae. 

2.3. Phase boundary relationships 

We now proceed to derive radial flow phase relationships similar to those given by 
Lenormand [49] for linear flow. 

2.3.1. Limiting conditionsfor DLA. Combining ( 6 a )  and ( 6 b )  into a ratio proportional 
to M(~:(Gp,wa,)/(Gpwa,)), 

Ma[ rw(s ) / ( l  - r ~ w ( b ) ) l =  ( 1  -4w(s)) / (1-4Nw(b))  + 0 (9a)  

in the DLA limit. Substitution of the results in (5) gives 

( 4 y  cos O ) / ( S p w a , )  + 0. (96) 

Rearranging, we get for Spw+ CQ, using (4b), K 2. a:, and V -  q / a : :  

N c , s 4 C ( R / r ,  O)M ( 9 c )  

where C ( R / r ,  0 )  is a geometrical constant (=(27rcos e ) /& l n ( R / r ) ) ,  which corre- 
sponds to the linear-flow constant (=  ab/&L). Except for the constant due to radial 
flow, (9c) is very similar to (8) in [49], even though the derivation is performed 
differently. 

2.3.2. Plug-j7ow limit. For stable displacement we have 

M w - , ( s ) / ( l  -L" I - .~  
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Proceeding in the same way as for (9c) and accounting for radial flow, we obtain 

N , , ~ ( a b c o s  6 ) / & ( R ;  r) .  (1OC) 

Thus, neutral wettability displacements would not exhibit the invasion percolation 
stage, even for very low Nca ,  For linear flow (49) and cos 6 = 1, one obtains N c , a  
( a b / & L ) ,  where L is the extent of the medium. Taking the definition of M in (9a) ,  
we see that stable, non-wetting displacement occurs when M is greater than the ratio 
(a,/a,): a higher pressure is required from the non-wetting phase in  order to compensate 
for the greater magnitude of the capillary pressure present in the smaller bonds. 

2.3.3. Invasion percolation. From (7) and ( l o a )  we obtain the sticking probabilities 
for invasion percolation: 

r ,db) /  (1 - r&)) O( 1). (11) 

The interface is being hit by walkers from both phases because capillary forces are 
of the same order of magnitude as viscous forces. Boundaries should follow the same 
laws as in ( 9 c )  and ( ~ O C ) ,  but with a constant scaling factor [49] to account for the 
difference between microscopic (i.e. pore-scale) and macroscopic distances. Our results 
are thus consistent with those in [49], except that boundaries are dependent on the 
radial distance, r, because of the different velocity field. Nonetheless, a similar phase 
diagram is obtained. 

Details on how the simulations were carried out will be given in the following section. 

3. Methods 

A square network of 65 536 capillary elements, each having a different square cross 
section and similar to one presented in [51], is built using a log-normal distribution 
centred around 0.3 lattice units (figure 1). Both permeability and porosity are deter- 
mined from geometrical considerations: for example, the permeability is proportional 
to the square of the average bond diameter, ab.  Each capillary element consists of a 
site of diameter a,, the access to which is controlled by a bond of diameter a b .  The 
average bond diameter, ab, for the present work is equal to 0 . 7 5 ~ ~ .  

‘Polya drunks’ (i.e. random walkers) are launched either from a growing circle 
situated at a minimum of six lattice units ahead of the advancing interface [17] and 
centred on the point of injection, or launched from the latter. The frequency at which 
either source is chosen is determined by a binary weighted-coin toss of which the 
probability depends on the normalised pressure drop of the wetting fluid taken over 
one lattice unit. Since a lattice unit is much smaller than the breakthrough radius, R, 
the pressure drop over this lattice unit is well described by Darcy’s law for linear flow; 
therefore, random walkers come from the wetting phase with a probability equal to 
Gp,, where 6 is the normalised velocity and fiw the normalised viscosity of the wetting 
phase. This velocity can be calculated using the phase boundary conditions given in 
(9c) and (1Oc). However, we use the more precise derivations of [49] to predict the 
value of the percolation threshold (equations (6) and (7) therein) and to obtain the 
ratio of N,, to the RHS of either (8) for DLA, or (10) therein for stable displacement 



D F Leclerc and G H Neale 

[49]. The velocity is set to infinity when capillary forces are negligible with respect to 
viscous forces, using a scaling factor proportional to the range of capillary numbers 
found between the percolation threshold and the corresponding value for either plug 
flow or DLA. Walkers are usually allowed to walk in randomly-selected directions 
(chosen by permutation of indices) until they reach a nearest-neighbour site and stick 
to the interface with a probability #JNW.W(b; s) (equation (5)). They may also stick to 
a next-nearest neighbour site with a probability #JNW,W(b; s)( 1 - &W,W(b;S))‘. Walkers 
which venture beyond a radius three times that of the launching circle are killed [ 171. 

High-pressure drop conditions at velocities higher than a phase boundary are 
simulated by having a site visited at least m times (equation (4))  before allowing the 
interface to move at this point. As for the intermediate zone between the DLA and the 
plug-flow phase, we assume that viscous forces become predominant as N,, goes to 
unity, Large-scale lattice effects are prevented by permitting movement in  both axial 
and diagonal directions, with the axial one being preferred about 70% (cos 45”) of the 
time, because of the shorter travel distance. 

Walkers diffusing from the origin are ‘infected’ with a disease called ‘percolitis’ 
[39] with which they can invade neighbouring cells. The probability of infection is 
given by (8) :  four coin-toss trials are performed using a weighted coin. The tally of 
heads determines the number of active bonds at a particular site. Trapped wetting 
phase areas are deemed to be ‘immune’ to the disease. Because only infected individuals 
living near the growing interface are contagious, there is a trapping rule that prevents 
infectious cells surrounded by a minimum of three immune cells in any direction from 
transmitting the disease. A record is kept of infected, but not yet contagious, individuals, 
so that percolation will occur every time a walker sticks to the interface from the 
displacing phase. 

Therefore, in the stable displacement limit, M + CO and contagion ripples through 
the network in concentric waves. The probability of being infected is a certainty 
because capillary forces are negligible and infection occurs on first contact. At high 
flow rates, however, percolation tends to occur in a radial direction, rather than along 
a direction chosen at random, because of the stronger pressure drop experienced by 
radially oriented pores. On the other hand, walkers hitting from the displaced phase 
cannot percolate because they represent disruptive processes which are involved in 
unstable displacement. Conditions for which capillary forces are negligible are simu- 
lated by applying phase boundary conditions to the ratio, (47 cos f3) / (SpNW;Wab,s ) ,  
which is then normalised to probabilities using the transformation x + x / (  1 + x). 

This process is continued until a preset breakthrough radius is reached by the 
cluster. Recovery is estimated by calculating the respective areas of empty and filled 
capillary elements within the breakthrough radius. 

The fractal dimension, D, is determined as a function of the non-wetting saturation 

ID-2)  S N w a r  . 

Given that SNW = N /  r 2 ,  where N is the number of lattice units invaded by the 
displacing fluid, (12) yields N a r D ,  D being the log-log slope of N against r [43]. 
The method used in this work is described by Forrest and Witten [ 141. Growth beyond 
the radius of gyration is still incomplete and, therefore, determination of the fractal 
dimension is not carried out over distances 20% beyond the radius of gyration. 

All programming was done in FORT RAN^^. Extensive use was made of I M S L  
(Houston, TX, USA) library routines, in particular GGUBFS (pseudo-random number 
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generator), GGPER (random permutations), G G B N  (binomial distribution; weighted-coin 
tosses) and GGNLG (log-normal distribution). 

Simulations were performed using the VM/SP 370 CMS and VMBATCH environments 
on the University of Ottawa Computing Centre's A M D A H L  470 v8 computer. The simula- 
tion parameters (see table 1) represent conditions very similar to those present in the 
experiments carried out by Lenormand and Zarcone [48]. 

Table 1. Results of numerical experiments. 

Figure M N,, D rhb ''0 recovery 

7.6 x IO-' 
7.6 x 1 0 - ~  
7.6 X 

7.6 x lo- '  
7.6 x IO-' 

13 
13 
13 
13 
13 

2.30 x IO-'" 
1 . 1 ~ ~  1 0 - ~  
1.15 x 
1 . 1 5 ~  IO-' 
1.15x 
3.0 x lo-" 
6.0 x IO-" 
1.5 x 

1.5x 
1.5 x 

1.90- 1.94 
1 .SO- 1.84 
1.80-1.84 
1.54-1.58 
1 .SO- 1.54 
1.77- 1.83 
1.83-1.87 
1.95-1.97 
1.99-2.00 
1.99-2.00 

0.916 
0.688 
0.172 
0.008 
0.000 
0.745 
0.853 
0.935 
0.992 
0.997 

78-83 
28-48 
18-26 
13-14 
14-18 
35-39 
35-55 
78-84 
96-97 
97-98 

4. Results and discussion 

A network of pores and sites was generated using a log-normal distribution, as described 
in the preceding section. Figure 1 shows a graph of each distribution in terms of lattice 
units. Before performing the second set of simulations ( M  = 13, 0 = 50"), the percola- 
tion probability, rNW( b), was weighted with a constant ( ~ 2 . 0 5 )  until the percolation 
threshold was reached. This was done at the predicted threshold value for favourable 
displacement ( N c a  = 1.5 x A fractal dimension consistent with invasion percola- 
tion was also measured with a weighting factor of 1.15 when conditions were changed 
to N,, = 1.75 x and 0 = 70": the percolation probability for these 
conditions was found to be approximately 0.5. Small differences with the results given 
in [49] may be accounted for by slightly different porosities, permeabilities and 
uncertainties in the contact angle measurements given in [49]. 

Simulations were performed five times for each set of conditions (table l ) ,  except 
for the longer runs near the percolation threshold. Results were averaged and are 
tabulated in table 1. Sample runs are shown in figure 2(a-e) for M = 7.6 x and 
in figure 3 (a -e )  for M = 13. Experiments 2(b)  and 3 ( a )  were run near the percolation 
threshold. The lowest recoveries are observed for DLA (figure 2 ( d ) ) ,  and are quite 
close to the predicted value of 11% [24]. Fractal dimensions are lower than predicted, 
possibly because of some screening effects in the growth process [24]: the biggest 
fingers act as traps and stunt the growth of smaller fingers. Increasing the interface 
velocity is equivalent to having either a higher intrafluid pressure drop or a lower 
mobility, which both have the effect of further stabilising the interface by smoothing 
out noise [50] over m walk steps (Equation (411, before the meniscus can advance. 
Fatter, dendritic fingers result (figure 2( e ) )  from a slightly gradient-controlled process 

M = 7.6 x 
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l e )  

Figure 2. Sample numerical experiments for M = 7.6 x 
0.13; ~ = 0 . 0 4 .  
N,,  = 1.15 x lo-'; (e j N,, = 1.15 x 

8 = 70"; y = 66 m N  m- ' ;  E = 
( a )  N,,=2.30x10-'o; (bj h.;,=1.15~10-~; (c) N,,=1.15~10-~; ( d )  

j bl 

Id1 
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! c l  

! b l  

( e l  

Figure 3. Sample numerical experiments for M = 13, 8 = 50"; y = 18 mh' m-'; E = 0.13; 
~ = 0 . 0 4 .  ( a )  N , , = 3 . 0 ~ 1 0 - ~ ;  ( b )  N , , = 6 . 0 ~ 1 0 - ~ ;  ( c )  N , , , = 1 . 5 ~ 1 0 - ~ ;  ( d )  N,,= 
1.5  x ( e )  N,, = 1.5 x IO-'. 
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and, although the fractal dimension is much lower (table l ) ,  recoveries are slightly 
higher than for DLA. This type of finger is also seen in [48] for N,, = 1.15 x and 
M = 7.6 x Dendritic growth may also explain the slight increase in recovery seen 
in [ I O ]  for very high flow rates; recovery undergoes a steep decrease when passing 
from the invasion percolation threshold to the diff usion-limited stage, where recovery 
reaches a minimum. At the present time, it is not yet clear [50] whether dendritic 
growth represents a special, noiseless case of DLA or forms a very different type of 
process. The low values for the fractal dimension indicate that the second alternative 

Recoveries for invasion percolation are in the 25-50% range; this indicates that 
low flow rate oil displacement may be called for in order to effect higher breakthrough 
recoveries, especially when dealing with heavy crude oils. These and the remainder 
of the experiments show displacement patterns and recoveries that are consistent with 
those obtained in [48]. 

The level of agreement with previous experimental work [27, 29, 36, 47, 481 is 
remarkable, considering the range of viscosities, surface tensions, and flow rates over 
which simulations were performed. Our results for very low N,, confirm the invasion 
percolation experiments by Lenormand and Zarcone [47,48]. With the algorithm 
presented here, we have observed viscous fingering fractals for about the same condi- 
tions as in [27, 29, 36, 481. Stable displacement, on the other hand, is observed in 
similar conditions by King and Scher [32], by Sherwood [34] and by Lenormand and 
Zarcone [48]. 

The simulation method described in the present work can therefore address both 
stable and unstable types of displacement in porous media, from diffusion-limited 
aggregation to invasion percolation and plug flow. 

Work is in progress for simulating conditions closer to those observed in actual 
reservoir displacement situations including: complex pore size distributions; local 
variations in wettability; regions of different permeabilities; and the determination of 
boundaries for dendritic growth. 

may apply. 

5. Summary 

A predictive algorithm for simulating non-wetting, immiscible displacement in porous 
media is described in terms of viscosity ratio and capillary number. Invasion percola- 
tion, viscous fingering and plus flow are identified as distinct behaviours resulting from 
the interplay of capillary and viscous forces. 

Simulation of these phenomena is achieved by letting two kinds of random walkers 
hit an interface with a frequency ratio proportional to the viscosity ratio, and stick to 
that interface with a probability inversely proportional to the interfacial tension. In 
addition, walkers diffusing from the displacing phase are subject to a percolation 
mechanism similar to the propagation of epidemics and which follows a biased binomial 
distribution generated by the sticking probability. For example, all neighbours will be 
invaded (i.e. infected) if capillary forces are much less important than viscous forces, 
and recovery will tend to be complete. On the other hand, viscous fingering is observed 
for high flow rates and very low viscosity ratios. Finally, invasion percolation ( D  = 1.82) 
is the sole displacement mechanism at low capillary numbers: for example, at the 
predicted precolation threshold, the sticking probability for the non-wetting phase is 
observed to be equal to approximately 0.5 for a viscosity ratio of 7 . 6 ~  Results 
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are compared with previously reported experiments and are found to be in good 
agreement with respect to recovery and growth rate exponent. 
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